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Scattering of Surface Waves on Transverse
Discontinuities in Symmetrical
Three-Layer Dielectric

Waveguides

KAZUNORI UCHIDA, MEMBER, IEEE, AND KAZUQ AOKI

Abstract —This paper presents a rigorous Wiener~Hopf solution to the
problem of transverse discontinuities in a symmetrical three-layer dielectric
waveguide excited by the dominant TE mode. Fourier transformation and
the proper boundary conditions provide the Wiener—Hopf equation for the
Fourier components of the scattered fields at the interface between the free
space and the dielectric waveguide. A formal solution to this equation is
derived by conventional factorization methods, and an iterative method is
proposed to calculate the reflected, transmitted, and radiated fields numeri-
cally.

I. INTRODUCTION

PEN DIELECTRIC waveguides have become in-

creasingly important in the past few years, particu-
larly in connection with the areas of integrated optics and
millimeter-wave integrated circuits. For the design of com-
ponents in these circuits, it is necessary to investigate the
surface-wave scattering at the discontinuities in dielectric
waveguides, such as steps, changes in the material proper-
ties, and others, beforehand.

The widely used approach to this type of problem is to
expand the scattered fields in terms of discrete surface-wave
modes and continuous-radiation modes, and then to match
the tangential field components at the junction of the
discontinuities. In earlier analyses [1], [2], some approxima-
tions were made to discretize the continuous-radiation
modes for computational convenience. Lately, a variety of
analytical methods have been exploited by different re-
searchers [3]-[7] in order to determine the amplitudes of
the aforementioned modes more precisely. In these analyses,
however, tangential field components should be matched at
the boundaries which extend to infinity, even in free space.
It seems, therefore, that much more computational effort
should be required to evaluate radiation fields accurately,
especially as the number of surface waves increases.

The other rigorous approach is to make use of the
Wiener—Hopf technique, which can be considered one of
the most powerful analytical methods for treating boundary
value problems concerned with semi-infinite boundaries
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[8], [9]. This technique has been applied for a single-layer
dielectric guide [10], [11] and for a cylindrical dielectric rod
[12]}. Since the region is separated into two parts (inside
and outside the dielectric guides), this method would be
suitable for open-type problems. Accuracy of the final
results, however, depends on branch cut integrals related to
radiation fields, as well as truncation of infinite-dimen-
sional algebraic equations associated with the discontinui-
ties of the media at the junction of the two dielectric
guides.

In the present contribution, it is shown how the above-
mentioned Wiener—Hopf technique allows a natural exten-
sion of the discontinuity problem of open-type planar
symmetrical three-layer dielectric waveguides. This is of
great importance in practical application, because steps,
bifuractions, and others are automatically solvable only if
some of the parameters are appropriately chosen. First, a
formal solution is derived by a conventional factorization
method; the key point of this analysis is to expand the
fields at the interface of the two waveguides in terms of
newly defined orthogonal sets of functions related to the
poles of the kernel functions of this system. The analysis is
fairly simplified, almost as much as in the single-layer case
by this expansion, which has already been described
elsewhere but without numerical results [13]. Second, to
obtain physical quantities numerically, an iterative method
is introduced, starting from the initial solution, which is
analytical and holds for small discontinuities. This is a very
effective method for determining Fourier components, not
only because it is unnecessary to solve the algebraic equa-
tions but also because a part of the branch cut integrals is
reduced to residue calculus. To the authors’ knowledge,
such an iterative method has not yet been used to deal with
open-type dielectric waveguides.

The geometry of the problem is shown in F1g 1, where
the structure is uniform in the y-direction. In order to
minimize the details, even TE excitation is considered. The
extension to an odd one has no difficulties; only the
exchange of some functions is enough to obtain final
results. The extension to the TM case is also possible with
some modifications. The time dependence e/’ is assumed
and suppressed throughout.
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Fig. 1. Geometry of the problem.

II. FREE WAVES

Since the incident wave is a TE wave, only the TE modes
are excited. Thus the electromagnetic fields can be derived
from the leading function E, as follows:

1 d

ILIX(x,z)——-j‘m0 -EEy(x,z) (1a)
H(x,2)=—2 L F (x2) (ib)
: Jope 0x7
E.(x,2)=E,(x,z)=H,/(x,2)=0 (1c)
where E, satisfies the following wave equation:
a—2+—8-2—+x2(x)E(x z)=0 m=1,2 (2)
ax* 32 " e ’ ’
with
km(x) = g, b<|x|
=Ky = Koly,,, a<|x|<b
T K1 = Kol O<|x]<a (3

where n,,, (/=1,2) indicates the refractive index of each
layer, and €, and p are the permittivity and permeability
of free space, respectively. The boundary conditions are
summarized as follows:

(B1) radiation condition at infinity;

(B2) continuity of E, at x = a;

(B3) continuity of E, at x = b;

(B4) continuity of H, at x = g;

(B5) continuity of H, at x = b;

(B6) continuity of E, at z=0 and 0 <x < b;
(BT7) continuity of H, at z=0 and 0 < x < b;
(B8) edge condition.

Now we consider free waves along an infinitely long
symmetrical three-layer dielectric waveguide, that is, n,, =
ny, and ny = n,, in Fig. 1. Because of the symmetry of the
structure, field components separate into two parts, even
and odd ones. If we let z-dependence be e /%% and restrict
our discussion only to the even part, the solution to (2),
which satisfies the boundary conditions ( B1)—(B4), can be
expressed as

Ey(x, $)=U-eThox=8),
=U-F,(x,{),

A

b<x
O0<x<bh

(4)

where U is a constant and

ko= (k3 —$2)"". (5)

Field expressions for x < 0 are omitted here, since they are
symmetrical with respect to the z-axis. The branch of kg is
chosen as Im k, <0, and F, (x,{) is defined by

SinkZm(x_a) _ Glm(g‘) . SinkZm(b_x)

B ) == nd G0 Sk d

as<x<b

BB e 6
where

Kim =Ky = $? (7a)

d=b-a (7b)

G1n($) = —k,,,coseck,, d (7¢)

Gy, (§) =k, c0tk,,d — K, tank,, a. (7d)

In (4), we have used the notation such as E (x,{), since
e/ dependence is assumed and suppressed.

Combining (la) and (4), the boundary condition (B5)
can be described in the form

U-G,(§)=0 (8)

where the kernel function is defined by
Gu($) = jko + G, (3) (92)
Gm(gl) =k2mC()t kZmd_G%m(g)/GZm(g’) (9b)

The zero s, of this kernel function corresponds to the
propagation constant of the »th surface wave supported by
this uniform dielectric waveguide, that is

Gm(smv)zoa V=172a"'5Mm (10)

where M,, is the number of surface waves of this system.
Let us consider the poles of this kernel function or

Gyn($0y) =0, v=1,2,---. (11)
Physically, these poles correspond to the propagation con-
stants of modes in a dielectric-loaded parallel plate wave-
guide enclosed by perfectly conducting sheets at |x|= b.

We can define the following set of functions by residue
calculus:

(12)

These functions have the following orthogonal relation-
ship:

Fmv(x) = g,]il? (g_g‘mv)Fm(x’g’)

my

- . G}
bem,,(x)Fm(x) dx=“—1ml(§””’) #0, rv=p
0 2§mVG2m(§mv)
=0, vER, v,p=1,2, .-
(13)

where G, is the derivative of G,, with respect to its
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argument. This relation corresponds to the orthogonality of
modes in the aforementioned dielectric-loaded parallel plate
waveguide.

1I1. ScATTERED FIELDS

Now, we investigate the scattering of an incident surface
wave at the junction (z = 0) of two semi-infinite dielectric
waveguides (m =1,2). The total fields (superscript ¢) are
expressed by the sum of the incident i and scattered s fields
as

(E',H')=(E',H")+(E*, H*) (14)

where the incident surface wave, as was discussed in the
previous section, is given by

E;(X,Z)=Nl(Su)e_-Y“(x_b)_js“z, b<x
=Ny (sp) Fi(x,8)e”%, 0<x<b (15)
where
[ 1 k,,,d —sink,,dcosk,,d
({) )u’() T + [ 2 . 22 2 ]
JKo ky,sin“k,,,d
2
%+@mq
G2m(§)
s G, () — Ky, doosk,,,d +sink,,d]
G2m(§)k2m5il'12 kZmd
. -1,2
G2, ()| ky,a +sink,,acosky,a]
G%m(g)klmcosz klma
(16a)
m= 3121 - "(2) . (16b)

N;(sq3) is the normalization factor of the dominant mode
of the left dielectric waveguide (m =1, »=1); unit inci-
dence from the left is assumed. Other incident field compo-
nents are derivable from Ej by using (1), but are omitted
here.

The purpose of this paper is to find out the solution for
the scattered fields which satisfies the wave equation (2)
and the boundary conditions (B1)-(B8). In the following
analysis, we use the Fourier and its inverse transformation
defined by

fm=ﬂﬂm=ﬁﬂnww (17a)

() =7 f(§)] = (17b)

ﬁmww;
where f(z) is an original function, and f({) is its image
one. The infinite contour ¢ must lie in the overlapped strip
D defined by »; <Im{ <, as shown in Fig. 2, where »,
and », are constants determined from the radiation condi-
tion as |z| — co. When the analysis is complete, we let these
constants approach zero.

For analytical convenience, we subdivide the scattered

1 Im 3
u
'sjv Ko
~— ] 0 "
)‘(, S,U
L

Fig. 2. Integration contour ¢ and regions L, U, and D.

fields into two parts as

(E*, H*) = (E{, HY)+(E3, H;),  |x|
where

(Ef, Hf)=(E*,H*)L(—z)—(E', H')L(z) (19)

<b (18)

(E5, H;) = (E',H')L(z) (19b)
and L(z) is a step function defined by
L(z)=1, forz>0
=0, forz<O. (20)

It is worth noting that the first fields (m =1) satisfy the
wave equation (2) in the left dielectric waveguide, and their
unknown parts are defined only for z <0, whereas the
second ones (m = 2) satisfy the wave equation in the right
and are defined only for z> 0. This separation of the
scattered fields gives an introduction to the succeeding
analysis based on the Wiener—Hopf technique.

1V. FoOURIER COMPONENTS

For x > b (in free space), direct Fourier transformation
of the wave equation (2) yields

(;’2 +k0)E (x.{)=0, teD.  (21)
Referring to (4), we can express the solution in the form
5i(,6) = AEE) e ()
where
U
f_igf—)l_gr[Eysl(b,z)], U1(311)=_jN1(311)
(23a)
U
{L_(sg)—_gr[ (b, 2)],  Uy(sn)=0. (23b)

It should be noted that (22) satisfies the boundary condi-
tions (B1) and (B3). The presence of the pole at {=sy;
originates from the incident surface wave, and the analyti-
cal properties of the unknown functions can be described
such that U ({) is regular in the lower half-plane (region L
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in Fig. 2), and so is U,({) in the upper (region U). We can
make sure of these regularities directly from (17), (19), and
23).

For 0 < x < b, taking the Fourier transform of the wave
equation (2) directly for each field (m =1,2), we obtain the
following inhomogeneous differential equation:

(_+k,m) 5 (68) = (=) [ fu(x) = ()]
m,[=1,2 (24)

where / =1 and 2 denotes the region 0 < x <gand a < x <
b, respectively, and

1) i (x) = (35— &) Bi(x=0)  (252)

£ (x) = fga(x) = ( - ) E(x,+0)  (25b)

where the derivative OEy(x, +0)/dz indicates putting z —
+0 in JE}(x,z)/dz. The inhomogeneity is due to the
discontinuities of the media at z = 0, and the derivation of
(24) is straightforward by noting that the incident wave is
continuous at z =0 together with the field definitions in
(19).

The homogeneous part of (24) can readily be solved by
referring to (4). As to a particular solution, we now expand
the right-hand side of (24) in terms of the orthogonal
functions defined by (12) as follows:

fm('x)=_zamv mv(x) m=1’23 V=1327

gm(x) ="~ Z By Fr (%),
(26b)

These expansions are considered as the generalization of
Fourier sine-series [13]. The general solution is then ex-
pressed by the sum of a homogeneous solution and a
particular one in the form

am(%,8) = UmF( .£)
o MO NI ENC)

It should also be noted that this expression satisfies the
boundary conditions ( B2)—(B4).

Let us consider the analytical properties of the unknown
coefficients «,,,, and B,,,. First, we shall show that all these
coefficients are not independent. From (1), (25), and (26),
it can easily be recognized that the boundary conditions
(B6) and ( B7) are satisfied by

Zaluplv(x)zzaZuEp(x)’ V,‘LL=1,2,
v 3
(28a)
Zﬁluﬁlv(x)=2182pﬁzu(x)’ V,,U,=1,2, Tt
v B

(28b)

Multiplying both sides by F,,(x) or ,(x), and integrating
from 0 to b, we obtain

2§, Gy,($5,)
= P ’ 29
o, Gu(flp) L’? Gzlz(fzu) (fly fzﬂ)azﬂ ( a)
285, Gp($5,)
) P($1 29b
B, Gu(fu) T‘; Gz’z(fzﬂ) (fh fzu)ﬁzﬂ ( )
or
2% ¢ Gulb,)
) P(8y,. 80 )0, (29
Ay G12(§2F) Z,,: Gzll(fl,,) ({1,, §2u)0‘1 ( C)
2§2‘u G11(§1 )
= 4 P , . 29d
'82“ Glz(leu) g G4 (%) (§1V §2,,),31 (29d)
where
k ka—-k i
P(i,n)= lltan }gllza]—ié}ztan 1240
— EZI cot ]E21d - EzzCOt IEZZd
i -k (30)
and
]ga = ("121 - 52)1/2, [=1,2 (312)
kn=(sh-w)" =12 (31b)

Thus a;, and B, are linearly combined with a,, and §,, or
vice versa.

Second, we shall show that these coefficients are related
to the unknown functions U,({) and U;({). As was men-
tioned earlier, the original function Eji(x,z) is defined
only for z <0 except for its incident surface-wave term
(z2>0), and Ej,(x, z) only for z>0. Consequently, their
image functlons should be such that Ej(x, {) is regular in
the lower half-plane, except for the pole {=s,;, and
E})(x,{) is regular in the upper half-plane. This requires
that the unknown coefficients «,, and §,, should be
associated with U, ({) to cancel poles in each half-plane.
Thus we obtain

~Sn

. 2§y,
ay, = 1By, = g—__l - Ul(s,), »=12,--- (32a)
, 2§2}L
a2u+J§2uBZu=EIS_u_IJZ(_§2u)9 ”:112’ Tt
(32b)
Analogous to (32), we assume
) 2$° y
a1u+]§1yﬂlv= §- 1 l( §1V) V=1929 T
(33a)
, 2§,
a2p._.]§2p,ﬂ2u=—§_‘_ﬂ-l]2(§2p,)7 I"’=1’25
i

(33b)
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Contrary to (32), (33) has no analytical meaning at this
stage, since the right-hand sides are defined in the half-
planes where the unknown functions are not necessarily
regular. However, it will later be clarified that (33) is also
reasonable for this problem. With these notations, we can
rewrite (27) as follows:

Up ($ms)
= )G —

] F _(x), m=12 (34

o 0) = 2 ()~ z[

Un(=$my)
T EF o) o+ 510)

511)

V. FORMAL SOLUTION

In the previous section, we have been able to construct
the Fourier components of the scattered fields with Uj({)
and U,({) alone. The remaining boundary condition (B5)
is satisfied by

d
EE;(x9§)|x=b+O [ 1(x §')+E;2(x §)]|x b—0

(35)

where Ej(x,{) is given by (22), and E;, (x,{) by (34).
After some algebraic manipulation, we can express (35) in
the form

6(6) 2 1.6,(5) 2O
[ U1(§1v) Ul("‘flu)
" Zu: | (§ - glv)(flu - Su) * (f + §1y)(§1u + 511) ]

‘Res [_Gl( - §1v)]

Y EAON U~ )
el (§—§2}L)(§2y _511) (§+§2p.)(§2p + Su)
-Res[Gz(gz‘L)]
=0, (€D (36)
where
Res[Gy(—§y,)] = I—ljlllﬁ (§+5,)G,(5)  (37a)
Res[Gz(fzu)] = §1-{)r?2 (§— fzy)Gz(f)- (37b)

Thus we have been able to derive the Wiener—Hopf equa-

tion for unknown U;({) and U,({); U,(§) is regular in the

lower half-plane, and so is U,({) in the upper, and this

relation holds in the overlapped strip D in the {-plane.
Let us factorize the kernel functions as

G(§) =G, (8)/G, (§) =G, ()G, (=£), m=12

(38)
where G, (§) and G, ({) are regular and nonzero functions
in the upper and lower half-planes, respectively (see Ap-

pendix I). With these factorized kernel functions, the for-
mal solutions to (36) can be obtained by conventional

Aimt
r.
0 Xo R
= )(g Re t
r
Fig. 3. Integration contoursI", and T _.

method [8] as follows:

0,0 =61 ()] G2+ 1)
sy (=) Res[G (= 5,) )
(=) <§+rh)(:1,+su)ar(—rl,)}' (392)
50= 5w
’{Iz(§)+(§_s11)
U2(§2M)Res[G2(§2u)]
zﬂ" (§—§zu)(§2u_su)G;(—§2u)} (39b)
where
(¢ —s11) JkoUy(t) dt
WO= 0 [ =0 soer@ 4
() -~ S [ 20 o

Contours I'_ along the branch cuts in the #-plane are
shown in Fig. 3. In this derivation, we have assumed that
Uy($) and U,({) are at most constants as [{| — oo in the
lower and upper half-planes, respectively. This is based on
the edge condition (B8) such that Ej(x,z) is, at most,
constant as x — b and z — 0 [14].

If we put { = — {;, in (39a), the right-hand side becomes
Uy(—¢§;,)- Furthermore, on substituting §=¢,, in (39b),
the right-hand side turns out to be U,(§,,)- Thus we can
make sure that (33) is valid for this problem.

VL

In the previous section, we have derived the solutions
which are rigorous but formal. We cannot obtain physical
quantities directly from these results, because the unknown
functions U;({) and U,({) are expressed in the form of
functionals including themselves. In this section, we intro-
duce an iterative method which is effective on this type of
formal solution.

ITERATIVE METHOD
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Combining (29), (32), and (33), we obtain

Z (§1v+§2u)P(§IV’§2n) . RCS[Gl(_glv)] Ul(—glv)

v G11(§1V)G12(§2u) (§1v+su)
- lfl(—§2p)
§2n + 51
n Z (§1V_§2u)P(§1v’§2u) . RCS[Gl(”flv)] Ui($1,)
b G11(§1V)G12(§2u) (1, —s11)

(41a)

or

D

I Gll(flv)GH(g‘Zy.)
Ul(\{’lv)

$1— 511

Y (flu"gzu)P(glwfzu) ] Res[G2(§2u)]Uz(—§2#)
L G11(§1V)G12(§2u) (§2u+311)

(1 +$2,) P(80,:85,) Res[Gy(£5,)] T (82)
(fzn '511) |

(410b)

It should be emphasized that, from (41) together with (40),
the right-hand sides in (39) are determined by the function-
als of U;({) in the lower half-plane and U,({) in the upper.

When G,(§) = G,({) in (36), we can easily determine its
solution, namely

U, (§) =Ui(s1) (42a)
U, (§) = —Ui(s11)- (42b)
This shows that no scattering occurs when the refractive
index of the right dielectric waveguide (m = 2) coincides
completely with that of the left one (m =1). Assume that
(42a) holds in the lower half-plane and so does (42b) in the

upper, and substitute these relations in the right-hand sides
of (39). Then we have

U1(1)(§) =U,(syy)
—(f“ Sll)Gf (f)

> [~ Ui(s1) + U (= $,)] Res [Gi (= §,)]
, ($+ 8,6 +5) 6 (=8,)
(43a)
Uz(l)(f) = U1(S11)+ E;—l(a {Ger (Sll)Ul(Sll)+ ($- 511)
) [U1(511)+U2(O)(§2,L)] RCS[Gz(fz,L)]
L =) = 5063 () } )

where U®(—§,,) and UV(¢,,) are given by substituting
(42) into the right-hand sides of (41). Furthermore, the
branch cut integrals have been reduced to residue calculus
(see Appendix 1II).

The analytical solutions given by (43) can be applied for
small differences in material properties of the two dielectric

waveguides. For large discontinuities, however, this first-
order solution is not enough to obtain accurate physical
quantities, so it is necessary to repeat further iterations
numerically.

VIL

In the preceding sections, we have determined the
Fourier components of the scattered fields. We can evaluate
the physical quantities, such as reflected, transmitted, and
radiated fields, by means of the inverse Fourier trans-
formation.

For |x|<b and z<0, it is found from (22) that the
scattered fields can be derived from

Ej(x,2)=F [ E}(x,$)]

EVALUATION OF FIELD COMPONENTS

(44)

where Ej;(x,§) is given by (34). In order to carry out this
integration by the method of residue calculus, let us en-
close the infinite contour c in Fig. 2 in the upper half-plane.
Since the singularities of this integrand are branch point
¢ = —«, and poles at the zeroes of G,({), we obtain
MI
Eys(x’ z)= ‘I'{ad(xu z)+ Z Ny (51,) R, F (%, 5,,) e

. (45)

where the first term is the branch cut integral, and the
second one corresponds to excited surface waves traveling
toward the negative z-axis. Moreover, R, is the reflection
coefficient of the nth surface wave on guide 1, and the
normalization factor N,(s;,) and function F(x, s;,) have
already been defined in (16) and (6), respectively.

For |x| < b and z > 0, we have

E{(x,z)=F 'E5(x,8)]. (46)

Enclosing the contour ¢ in the lower half-plane leads to

M,
E;(’x’ Z) = \led(x> Z)+ E NZ(SZn)];B(x’ SZn)e_jsznz
n=1

(47)

where the first term is also the branch cut integral, and the
second one corresponds to excited surface waves on guide
2 with transmission coefficient 7.

For |x| > b, the scattered fields are derivable from

E}(x,z) = [ E}(x,{)] (48)

where Ej(x,{) is given by (22). If we concentrate our
discussions on far fields, we can evaluate this integral, with
good accuracy, by using the saddle point method. The
result is

E}(r,9)=[U(roc08¢)+ Uy(kocos $)]

e—jrcor+77]/4

y2megr ’

where we have introduced the polar coordinates

KoSing
KgCOS @ — 519

kor >1 (49)

(50)

In this far-field expression, we have neglected the contri-

x=rsing Z=1rcos¢.
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1 IRLITI
1.0t « T

—— present method

..... reference (3}

05}

001 002 005 01 02 05 1.0 asb

Fig. 4. Moduli of reflection and transmission coefficients for step dis-
continuity versus step height.

1.0 L lR'I '
i

— present method

reference {7)

0S|

o A P A l’ A l>)t’b ’
10 20

Fig. 5.. Moduli of reflection and transmission coefficients for step dis-
continuity versus normalized frequency.

butions for surface waves and leaky waves which are
important as the observation angle ¢ approaches 0 or =
[s]. ,

From (49), we define the radiation power density by

< | U, (kgcos o)+ U2((cocosq>)
KoCOS & — 5,

2. .,
Ky Sin” ¢
20

(51)

This density is related to the total radiation power by
v
Poy=2[ P(6) d9. (2)

Since unit incidence from the left guide has been consid-
ered, the energy conservation law should be

Z IT,1” +

n=1

1= Z |Rn|i+ (53)

VIII. NUMERICAL RESULTS

In Figs. 4 and 5 we compare our results with those of
Rozzi [3] and Gelin [7] for the step discontinuity, which is a
special case of the symmetrical three-layer dielectric wave-

ARLITI

05f

o n ». i 1 L A " i A 2 n i A x’( b
1.0 i 20 30

Moduli of reflection and transmission coefficients for bifurcation
versus normalized frequency.

tim,m

1.0

g T2 )
0 HE SR I
0.5 . 1.0 a/b

Moduli of reflection and transmission coefficients for bifurcation
versus bifurcation height.

Fig. 7.

gulde shown in Fig. 1 that is, ny;=n, =n;;=n and
N, =1, or 0y =ny, =n, =n and n, =1. There are some
differences between ours and Rozzi’s results for a large
discontinuity (a /b < 1), while our results agree quite well
with those of Gelin, except near the cutoff of the higher
mode. Fig. 6 shows the variation of the moduli of the
reflection and transmission coefficients versus the normal-
ized frequency kb for one type of bifurcation (ny; = n,, =
n_and ny =n;;=1). As the normalized frequency in-
creases, the transmitted power decreases, and the reflected
one becomes larger, as far as the dominant modes of the
two guides are concerned. This is due to the increased
mismatch of the field distribution of thesé two modes at
the junction for higher frequency. Fig. 7 illustrates the
variation of the moduli of the reflection and transmission
coefficients versus a/b for another type of bifurcation
(ny,=ny = ny =nand ny, =1). The transmitted power to
the lowest mode on guide 2 decreases rapidly as a/b — 1.
This feature corresponds to the conversion of the trans-
mitted power to the radiated one.

The angular dependence of the radiation power is plotted
in Figs. 8, 9, and 10. It can be concluded from these results
that the radiation power of the step discontinuity case is
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2 pig)x10°® terms of newly defined orthogonal sets of functions derived
from the residue calculus of the kernel functions. The
formal solutions have been obtained by the rigorous analy-
sis, and the physical quantities such as reflected, trans-
mitted, and radiated powers are calculated numerically by
use of an iterative method. The first-order solutions used in
this iteration are analytical, and hold for small discontinui-
ties.

The results obtained here can be extended to the TM
case. For a TM wave, however, the kernel function, the
orthogonal relationship, and the boundary condition corre-

2 5 s O sponding, respectively, to (9), (13), and (28) should include
150 1200 90" 60 30 0 & apsquaregof tl?e refragtive i(nzleg( (1)1,2m) e)gpli)citly. Therefore,
Fig. 8. Radiation power density for step discontinuity versus azimuthal  the final solution describing the TM wave is somewhat

angle. The step height is a parameter. more cumbersome than the corresponding solution describ-

ing the TE wave. The rigorous formulation for the dielec-
AP tric waveguides composed of more than three layers de-
serves further attention,

5.0t

APPENDIX |
o1l Factorized Kernel Functions
' Following the conventional procedure [9], we obtain
G, ($)
M, 1/2 N, 1 /2 ’
- $mn T§ _
- Lo T (2 i (Bt e
= § n=1 mn gl
150° 1200 90" 60 30 O° % ,
. - . N o L7 < W I SR A (LS
Fig. 9. Radiation power density for bifurcation versus azimuthal angle. -eXp 5 J Z b + 10
The bifurcation height is a parameter. n=N,+1 K - {
\ gl 2jxob\ | kob =+ jkg
04 | P® + (y 1+1og el log T
| . f Dyp(w) ,  (3b” ~ Wz)m_fbd
— lo —dw
0.2 2™l Don(W) " (132~ w?)' 4 (b
' b=(n—1/2)a/b, m=1,2 (A1)
01} where N, is the number such that {,,, is real for n < N,
and pure imaginary for n> N,, and y=05772--- is
0 Euler’s constant. Moreover, the functions involved in the

150° 1200 90" 60" 30° 0" @ integrand are defined by

Fig. 10. Radiation power density for bifurcation versus azimuthal angle. _ 2 2
The bifurcation height is a parameter. Dy, ( W) = (K 3m— Kim )

. (w2aS12m/w22mb + WzS%mclmSlm/WlmWZZM)

much smaller than that of the bifurcation one. This situa- 2

. . - K5, (2wy,,C 85 Cl oS 1m /W
tion depends mainly on the fact that the power of each I (2910 ConSomCimSim/ W
mode concentrates on both dielectric waveguides. The max- + CoiSywCo/ Wam)

imum of the field intensity is at the center of the guide for 2 2 ) 2
a step discontinuity case, whereas it deviates from the = KinConCimS1m/ Wim — WimSimCimSim/ Wam
center for a bifurcation one. — W S2 St/ Wi + S2Clom

IX. CONCLUSION + W Ch St/ Wi,

We have analyzed the problem of two symmetrical D, (w)=2K7 W1,.ComS2mCimSim
three-layer dielectric waveguide junctions by means of the
Wiener—Hopf technique. The key point is the expansion of
the scattered fields at the junction of the two guides in +w?CE,CE, + wiwk, 82 SE /wh (A2)

+ w2mS2mC + WlmCstlm
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where
Cy,p=cos(wy,,a/b)
C,,, = cos[w,,,(b—a)/b]
Si,, = sin(wy,,a/b)
Sy = sin[wy,, (b —a)/b]
and
wi, = K32, +w?
wi, =K}, +w? (A4)
and '
Ki, = (“1m - n%)b2

K2m= (KZm—K(Z))bZ' (AS)

APPENDIX I

Evaluation of (40) for Constant U,(§)

Even if we add the meromorphic function term Gl(t) in
(40a), the integral remains the same, namely

L Ges)) GO
WO =5 L 00 -seT )

When U, (1) = — Uj(sy;), we can enclose the contour I'
the lower half-plane; the only singularities in this plane are
the poles ¢ =¢{ and ¢ =s;;. Thus when U,(¢) is constant,
(A6) can be reduced to the residue calculus at the poles of
G,(?) in the upper half-plane plus the aforementioned two
poles in the lower. The result is expressed as follows:

_ U1(511) _ Ul(sl )
L8 =510) Gf(slll)

(§ = 51)Ui(sn)

(A6)

LG )6l (<) A7
Similarly, we have |
L($)=-GS (f)U1(511)+G2+ (s11) U (511)
_ : (§—s)Ui(s511)
Z (§ §2;L)(§2p. 511)G2 (_fzu) - (A9)
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