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Scattering of Surface Waves on Transverse
Discontinuities in Symmetrical

Three-Layer Dielectric
Waveguides

KAZUNORI UCHIDA, MEMBER, IEEE, AND KAZUO AOKI

Abstract —This paper presents a rigorous Wiener-Hopf solution to the
problem of transverse diseontinuities in a symmetrical three-layer dielectric
waveguide excited by the dominant TE mode. Fourier transformation and

the proper boundary conditions provide the Wiener-Hopf equation for the
Fourier components of the scattered fields at the interfaee between the free

space and the dielectric wavegnide. A formal solution to this equation is

derived by conventional factorization methods, and an iterative method is
proposed to calcnfate the reflected, transmitted, and radiated fields numeri-
cally.

1. INTRODUCTION

o PEN DIELECTRIC waveguides have become in-

creasingly important in the past few years, particu-

larly in connection with the areas of integrated optics and

millimeter-wave integrated circuits. For the design of com-

ponents in these circuits, it is necessary to investigate the

surface-wave scattering at the discontinuities in dielectric

waveguides, such as steps, changes in the material proper-

ties, and others, beforehand.

The widely used approach to this type of problem is to

expand the scattered fields in terms of discrete surface-wave

modes and continuous-radiation modes, and then to match

the tangential field components at the junction of the

discontinuities. In earlier analyses [1], [2], some approxima-

tions were made to discretize the continuous-radiation

modes for computational convenience. Lately, a variety of

analytical methods have been exploited by different re-

searchers [3]–[7] in order to determine the amplitudes of

the aforementioned modes more precisely. In these analyses,

however, tangential field components should be matched at

the boundaries which extend to infinity, even in free space.

It seems, therefore, that much more computational effort

should be required to evaluate radiation fields accurately,

especially as the number of surface waves increases.

The other rigorous approach is to make use of the

Wiener-Hopf technique, which can be wnsidered one of

the most powerful analytical methods for treating boundary

value problems concerned with semi-infinite boundaries
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[8], [9]. This technique has been applied for a single-layer

dielectric guide [10], [11] and for a cylindrical dielectric rod

[12]. Since the region is separated into two parts (inside

and outside the dielectric guides), this method would be

suitable for open-type problems. Accuracy of the final

results, however, depends on branch cut integrals related to

radiation fields, as well as truncation of infinite-dimen-

sionrd algebraic equations associated with the discontinui-

ties of the media at the junction of the two dielectric

guides.

In the present contribution, it is shown how the above-

mentioned Wiener–Hopf technique allows a natural exten-

sion of the discontinuity problem of open-type planar

symmetrical three-layer dielectric waveguides. This is of

great importance in practical application, beeause steps,

bifuractions, and others are automatically solvable only if

some of the parameters are appropriate] y chosen. First, a

formal solution is derived by a conventional factorization

method; the key point of this analysis is to expand the

fields at the interface of the two waveguides in terms of

newly defined orthogonal sets of functions related to the

poles of the kernel functions of this system. The analysis is

fairly simplified, almost as much as in the single-layer case

by this expansion, which has already been described

elsewhere but without numerical results [13]. Second, to

obtain physical quantities numerically, an iterative method

is introduced, starting from the initial solution, which is

analytical and holds for small discontinuities. This is a very

effective method for dete rmining Fourier components, not

only because it is unnecessary to solve the algebraic equa-

tions but also because a part of the branch cut integrals is

reduced to residue calculus. To the authors’ knowledge,

such an iterative method has not yet been used to deal with

open-type dielectric waveguides.

The geometry of the problem is shown in Fig. 1, where

the structure is uniform in the y-direction. In order to

minimize the details, even TE excitation is considered. The

extension to art odd one has no difficulties; only the

exchange of some functions is enough to obtain final

results. The extension to the TM case is also possible with

some modifications. The time dependence eJ”t is assumed

and suppressed throughout.
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Fig. 1. Geometry of the problem,

II. FRBE WAVES

Since the incident wave is a TE wave, only the TE modes

are excited. Thus the electromagnetic fields can be derived

from the leading function Ey as follows:

1
Hx(x,z)=- “ ~Ey(x, z)

JIO/40 (?Z

–1
H=(x, z)=— “ %y(x, z)

j@pO 8X

(la)

(lb)

EX(X, Z)= EZ(X, Z)= HY(X, Z)=O (k)

where EY satisfies the following wave equation:

[-

6’2

1
‘2 I K:(X) EY(x, z)=O,

6’X2 + 6’Z2
m=l,2 (2)

with

Km(X) =Ko, b < 1x1

‘K2m=KolZ2m, a<lxl<b

= Klm = KolZ1m, O<lxl<a (3)

where nl~ (1=1,2) indicates the refractive index of each

layer, and COand NO are the permittivity and permeability

of free space, respectively. The boundary conditions are

summarized as follows:

(Bl)

(B2)

(B3)

(B4)

(B5)

(B6)

(B7)

(B8)

radiation condition at infinity;

continuity of EY at x = a;

continuity of Ey at x = b;

continuity of Hz at x = a;

continuity of HZ at x = b;

continuity of Ey at z = O and O < x < b;

continuity of HX at z = O and O < x < b;

edge condition.

Now we consider free waves along an infinitely long

symmetrical three-layer dielectric waveguide, that is, nll =

n12 and n 21= n 2Zin Fig. 1. Because of the symmetry of the

structure, field components separate into two parts, even

and odd ones. If we let z-dependence be e–~r’ and restrict

our discussion only to the even part, the solution to (2),

which satisfies the boundary conditions ( B1)–(B4), can be

expressed as

=u”Fm(x, (), O<x<b (4)

where U is a constant and

~.= (K; –(2)1/2. (5)

Field expressions for x <0 are omitted here, since they are

symmetrical with respect to the z-axis. The branch of kO is

chosen as Im kO <0, and F~ (x,{) is defined by

%(x>{) =
sink2~(x – a) _ GI~({) . sin~zm(b–x)

sin k2~d G2m(J) sin kzwd ‘

_ Glm(() cmklmx——
G2m(f) “ cosklma’

O<x<a (6)

where

k:m = K;n, – {2 (7a)

d= b--a (7b)

Gl~({) = – kz~coseck2~d (7C)

G2~(J) = k2,ncOt k2md – kl~tankl~a. (7d)

In (4), we have used the notation such as Ey(x, {), since

e–J(z dependence is assumed and suppressed.

Combining (la) and (4), the boundary condition (B5)

can be described in the form

U. G~({)=O (8)

where the kernel function is defined by

G~({)=jko+~~({) (9a)

~~({) = k2~cot k,~d – G:~({)/G2M({). (9b)

The zero s~v of this kernel function corresponds to the

propagation constant of the vth surface wave supported by

this uniform dielectric waveguide, that is

%(sm. ) = 0, V=1,2,. ... M m (lo)

where Mm is the numb.w of surface waves of this system.

Let us consider the poles of this kernel function or

%({~v) =0, V =1,2,.... (11)

Physically, these poles correspond to the propagation con-

stants of modes in a dielectric-loaded parallel plate wave-

guide enclosed by perfectly conducting sheets at 1x1= b.

We can define the following set of functions by residue

calculus:

f~V(x)= t~~lv(J –{nV)F~(x, {). (12)

These functions have the following orthogonal relation-

ship :

= o, V+p, v,p=l,2, . . .

(13)

where G~~ is the derivative of G2~ with respect to its
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argument. This relation corresponds to the orthogonality of

modes in the aforementioned dielectric-loaded parallel plate

waveguide.

III. SCATTERED FIELDS

Now, we investigate the scattering of an incident surface

wave at the junction (z = O) of two semi-infinite dielectric

waveguides (m =1,2). The total fields -(superscript t) are

expressed by the sum of the incident i and scattereds fields

as

(E’, H’) = (E’, H’)+ (E’, H’) (14)

where the incident surface wave, as was discussed in the

previous section, is given by

E;(x, z) = Nl(sll)e-Y’’(X-~) -JS”z, b~x

= Nl(sll)Fl(x, sll)e-JS”z, O <x< b (15)

where

r[ [k,~d - sin k,~dcosk,nd]
~+N.(f)= ~ jkO

kz~sin2k2~d

[1.~+@n(J)
I%({)

_2 GI~({)[ – kz~dcosk2~d +sinkz~d]

Gz~({)kz~sin2k2~d

1

– 1/2

G~~(J)[kl~a +sinkl~acoskl~a]
+

G~~ ({) kl~cos2 kl~a

(16a)

-FYll – ~11 – ~. . (16b)

Nl(sll) is the normalization factor of the dominant mode

of the left dielectric waveguide (m =1, v =1); unit inci-

dence from the left is assumed, Other incident field compo-

nents are derivable from E; by using (l), but are omitted

here.

The purpose of this paper is to find out the solution for

the scattered fields which satisfies the wave equation (2)

and the boundary conditions ( B1)–(B8). In the following

analysis, we use the Fourier and its inverse transformation

defined by

f({) =w[f(z)] =/m f(z)eJr’dz (17a)
—w

f(z) =Y~l[f({)] = ~~f({)e-j{zd{ (17b)
c

where ~(z) is an original function, and ~({) is its image

one. The infinite contour c must lie in the overlapped strip
L) defined by VI< Im { < V2 as shown in Fig. 2, where VI

and V2 are constants determined from the radiation condi-

tion as Iz I ~ m. When the analysis is complete, we let these

constants approach zero.

For analytical convenience, we subdivide the scattered

AIm~

‘u
- ‘jv ‘b

+

\
D / ~ c -=. Re ~

o
“

kO ‘j.

VL

Fig. 2. Integration contour c and regions L, U, and D.

fields into two parts as

(ES, HS) = (E:, H~)+(Ej, Hi), 1x1< b (18)

where

(Ef, H:)= (Es, Hs)L(-z)-(Ei, H’)L(z) (19a)

(E~,H~) = (E’, H’)L(z) (19b)

and L(z) is a step function defined by

L(z) =1, forz>O

= o,, forz <0. (20)

It is worth noting that the first fields (m= 1) satisfy the

wave equation (2) in the left dielectric waveguide, and their

unknown parts are defined only for z <0, whereas the

second ones (m = 2) satisfy the wave equation in the right

and are defined only for z >0. This sepimation of the

scattered fields gives an introduction to the succeeding

analysis based on the Wiener–Hopf technique.

IV. FOURIER COMPONENTS

For x > b (in free space), direct Fourier transformation

of the wave equation (2) yields

()d2
—+k~ Ej(x, f)=O, {=D. (21)
dx2

Referring to (4), we can express the solution in the form

UI({)+U2(() .e-,ko(x-b)
Ej(x, f)=

({-$11)
(22)

where

(23a)

~=.%[E;2(/@]>
(– SIl

U2(S1J=0. (23b)

It should be noted that (22) satisfies the boundary condi-
tions ( Bl) and (B3). The presence of the pole at J = Sll

originates from the incident surface wave, and the analyti-

cal properties of the unknown functions can be described

such that Ul(( ) is regular in the lower half-plane (region L
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in Fig. 2), and so is U2(r) in the upper (region U). We can

make sure of these regularities directly from (17), (19), and

(23).

For 0< x <b, taking the Fourier transform of the wave

equation (2) directly for each field (m =1,2), we obtain the

following inhomogeneous differential equation:

(s+k’m)E~m
(X, {)=( -l)m[fm(x)-j{gm( x)],

m,l=l,2 (24)

where 1 = 1 and 2 denotes the region O < x -= a and a < x K

b, respectively, and

~~(~)-j~g~(~) = (~ - j{)E~(x, -0) (25a)

~z(x)-j{g~(x) = (: - j@x, +0) (25b)

where the derivative dE~(x, ~ 0)/dz indicates putting z -

~ O in dE~(x, z)/I?z. The inhomogeneity is due to the

discontinuities of the media at z = O, and the derivation of

(24) is straightforward by noting that the incident wave is

continuous at z = O together with the field definitions in

(19).

The homogeneous part of (24) can readily be solved by

referring to (4). As to a particular solution, we now expand

the right-hand side of (24) in terms of the orthogonal

functions defined by (12) as follows:

jm(x)=-~amv;m,(x), m=l,2, V=1,2, . . .

v

(26a)

gm(x)=–zl%~m.(~)> m=l,2, V =1,2,....
v

(26b)

These expansions are considered as the generalization of

Fourier sine-series [13]. The general solution is then ex-

pressed by the sum of a homogeneous solution and a

particular one in the form

+(–l)m~ am” – ~{~~”Fmv(x),
“ 1’ – (;V

m=l,2. (27)

It should also be noted that this expression satisfies the

boundary conditions (B2)-(B4).
Let us consider the analytical properties of the unknown

coefficients a.lv and &V. First, we shall show that all these

coefficients are not independent. From (l), (25), and (26),

it can easily be recognized that the boundary conditions

(B6) and (B7) are satisfied by

z~lv~lv(x)=z~2,r2,(x)* V, P=1,2, “ “ “
v P

(28a)

~B1.71.(x) =zB2,i2.(x)> v,p=l,2, o‘. .
P

(28b)

Multiplying both sides by II,(x) or ~2P(x), and integrating

from O to b, we obtain

or

where

/tzlcot kzld – Ezzcot l?22d—

L;l – L;2
(30)

and

/$, = (K;l – f2)1’2, 1=1,2 (31a)

/t12= (K;2 – ~2)1’2, 1=1,2. (31b)

Thus al. and &V are linearly combined with az~ and &W or

vice versa.

Second, we shall show that these coefficients are related

to the unknown functions Ul({) and U2({). As was men-

tioned earlier, the original function Ej(x, z ) is defined

only for z <0 except for its incident surface-wave term

(z> O), and E~2(.x, z) only for z >0. Consequently, their

image functions should be such that E~l (x,{) is regular in

the lower half-plane, except for the pole { = Sll, and

EJ2(x, { ) is regular in the upper half-plane. This requires

that the unknown coefficients a~v and ~~, should be

associated with U~ ({ ~)to cancel poles in each half-plane.

Thus we obtain

Analogous to (32), we assume

2{1.
al. + &#l. = — –—U1(– JIV),

{1. + Sll

/-1=1,2, . . . .

(32b)

V=1,2, . . .

(33a)

p=l,2, . . . .

(33b)
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Contrary to (32), (33) has no analytical meaning at this

stage, since the right-hand sides are defined in the half-

planes where the unknown functions are not necessarily

regular. However, it will later be clarified that (33) is also

reasonable for this problem. With these notations, we can

rewrite (27) as follows:

[
E;m(x,{)=y+m(x,{)-; ~/f,&)_~ ~

mv mv 11

%(-L) 1+({+L,)(L+,,1)‘WW(x)ym=1,2. (34)

V. FORMAL SOLUTION

In the previous section, we have been able to construct

the Fourier components of the scattered fields with UI(J)

and Uz({) alone. The remaining boundary condition ( B5)

is satisfied by

-~[~;l(x>r)+~;, (x>r)]lx=b-o:E;(x>{)lx=b+O – &

(35)

where EJ(x, f) is given by (22), and Ej~(x, ~) by (34).

After some algebraic manipulation, we can express (35) in

the form

“rqG2(t2p)]

= o, ~GD (36)

Thus we have been able to derive the Wiener–Hopf equa-
tion for unknown Ul({) and U2({); Ul(() is regular in the

lower half-plane, and so is U2({) in the upper, and this

relation holds in the overlapped strip D in the {-plane.

Let us factorize the kernel functions as

G~({)=G: ({)/G~(f) =G:(J)GJ (-{), m=l,2

(38)

where G;({) and G; (j’) are regular and nonzero functions

in the upper and lower half-planes, respectively (see Ap-

pendix I). With these factorized kernel functions, the for-

mal solutions to (36) can be obtained by conventional

Fig. 3. Integration contours r+ and r_.

method [8] as follows:

{

Ul(sll)
U,({) =G; ({) G_(~ll) +11({)

1

-(1-SH)Z

ul(– J1,)Res[Gl(–fl.)]

}“ (J+(I.)({l. +sI1)G: (-{1,) “

fJ2(r) = &
2

“{

~2({)+(r– %1)

U2(J2J Res [G2(J2P)I
“z

P (r- J2,)(i2, -’hl)G; (-I2P) }

where

(r - %,)
~1({) = Zmj

J

jkOU2(t) dt

r_(t–~)(t–ql)@ (t)

({-s11) jkOG~(t)Ul(t)dt
12({)= – ‘2~j J.+ (~–{)(t–S~~) “

(39a)

(39b)

(40a)

(40b)

Contours r ~ along the branch cuts in the t-plane are

shown in Fig. 3. In this derivation, we have assumed that

Ul({) and U2(j’) are at most constants as III ~ m in the

lower and upper half-planes, respectively. This is based on

the edge condition (B8) such that E;(x, z) is, at most,

constant as x ~ b and z ~ O [14].

If we put { = – {IV in (39a), the right-hand side becomes

Ul( – {Iv). Furthermore, on substituting { = {2P in (39b),

the right-hand side turns out to be U2({2J. Thus we can

make sure that (33) is valid for this problem.

VI. ITERATIVE METHOD

In the previous section, we have derived the solutions

which are rigorous but formal. We cannot obtain physical

quantities directly from these results, because the unknown

functions Ul({) and U2({) are expressed in the form of

functional including themselves. In this section, we intro-

duce an iterative method which is effective on this type of

formal solution.
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Combining (29), (32), and (33), we obtain

(41a)

or

_~ (L. -r2,)wl.J2,) Re’[G2(f2,)]wf 2P)

P %( L) G2(~2p) ({2M+%J “

(41b)

It should be emphasized that, from (41) together with (40),

the right-hand sides in (39) are determined by the function-

al of UI ({) in the lower half-plane and U2({) in the upper.

When GI(I) = G2(r) in (36), we can easily determine its

solution, namely

Ul(()=ul(sll) (42a)

u2(f) = – Ul(sll). (42b)

This shows that no scattering occurs when the refractive

index of the right dielectric waveguide (m = 2) coincides

completely with that of the left one (m =1). Assume that

(42a) holds in the lower half-plane and so does (42b) in the

upper, and substitute these relations in the right-hand sides

of (39). Then we have

(43a)

where U/o)( – {1, ) and U~0)({2P ) are given by substituting

(42) into the right-hand sides of (41). Furthermore, the

branch cut integrals have been reduced to residue calculus

(see Appendix II).

The analytical solutions given by (43) can be applied for

small differences in material properties of the two dielectric

waveguides. For large discontinuities, however, this first-

order solution is not enough to obtain accurate physical

quantities, so it is necessa~ to repeat further iterations

numerically.

VII. EVALTJATION OF FIELD COMPONENTS

In the preceding sections, we have determined the

Fourier components of the scattered fields. We can evaluate

the physical quantities, such as reflected, transmitted, and

radiated fields, by means of the inverse Fourier trans-

formation.

For 1x1< b and z <O, it is found from (22) that the

scattered fields can be derived from

E;(X,Z)=4=1[E;1(X, ()] (44)

where ~}:l(x, { ) is given by (34). In order to carry out this

integration by the method of residue calculus, let us en-

close the infinite contour c in Fig. 2 in the upper half-plane.

Since the singularities of this integrand are branch point

~ = – ~“ and poles at the zeroes of Gl({), we obt~n

Ml

EJ(x, z) = W~d(x<, z)+ ~ N1(sln)RnF1(x, sln)eJslnz
~=1

(45)

where the first term is the branch cut integral, and the

second one corresponds to excited surface waves traveling

toward the negative z-axis. Moreover, R. is the reflection

coefficient of the n th surface wave on guide 1, and the
normalization factor Nl(sl. ) and function FI (x, Sln ) have

already been defined in (16) and (6), respectively.

For Ix[ < b and z >0, we have

E;(X, Z)=%-’ [E;2(X, {)]. (46)

Enclosing the contour c in the lower half-plane leads to

M*

E~(~, z) = Yrd(x, z)+ ~ N2(sz. )Tti F2(x, s2n)e-~’~n’
~=1

(47)

where the first term is also the branch cut integral, and the

second one corresponds to excited surface waves on guide

2 with transmission coefficient T..

For 1x1> b, the scattered fields are derivable from

E;(x, z)=.$qqx,{)] (48)

where E;(x, f) is given by (22). If we concentrate our

discussions on far fields, we can evaluate this integral, with

good accuracy, by using the saddle point method. The

result is

~;(@=[~l (KoCOSC+)+~(Ko Cost+)]

K. sin $ ~–jxOr + Tj/4

—.

KOCOS @ ‘- S1l
@x7

Ko~ >>1 (49)

where we have introduced the polar coordinates

x = rsin~ Z=rcos+. (50)

In this far-field expression, we have neglected the contri-



UCHIDA AND AOKI : SCATTERING OF SUKFACE WAVES IN DIELECTRIC WAVEGUIDES 17

/

IRI,ITI

1.0 T
— present method

t ----- reference [31 / I \

0.5
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Fig. 4. Moduli of reflection and transmission coefficients for step dis-
continuity versus step height.

1’1‘“0‘~:od’
&~_tb ---- refe,e”ce ~,1

,.,,’: .::,.:. :

0.5 - Cl/b = 0.2

n ❑3.162

o
1.0

Fig. 5. Moduli of reflection and transmission coefficients for step dis-
continuity versus normalized frequency.

butions for surface waves and leaky waves which are

important as the observation angle @ approaches O or

[15].

From (49), we define the radiation power density by

r

ul(KoCOS~)+ u2(KoCOSf$) 2 icosid q
P(+)= :

KOCOS+ — S~~ 21r “

?r

(51)

This density is related to the total radiation power by

Prad = 2J”P(+) d+!

Since unit incidence from the left guide has

ered, the energy conservation law should be

lw~

1= f lRn12+ ~ lTn12+F’rad,
~=1 ~=1

VIII. NUMERICAL RESULTS

(52)

been consid-

(53)

In Figs. 4 and 5 we compare our results with those of

Rozzi [3] and Gelin [7] for the step discontinuity, which is a

special case of the symmetrical three-layer dielectric wave-

L

~ “4=s2’
RI

ah = 0.5
0,5 - n ❑ 3.162

T2

R2

T,

o * K,b
1.0 2.0 3.0

Fig, 6. Moduli of reflection and transmission coefficients for bifurcation
versus normalized frequency.

A IRI.ITI

-
. ‘? ?.’.’..’;::.’”” ~~

-:--,7,~-4 a... .. . .....

Kob=l.5
0.5 - n =3.162

o >
0.5 1.0 alb

Fig. 7. Moduli of reflection and transmission coefficients for bifurcation
versus bifurcation height.

guide shown in Fig. 1, that is, nll = nzl = n12 = n and

n22 =1, or nll = n12 = nz2 = n and n21 =1. There are some

differences between ours and Rozzi’s results for a large

discontinuity (a/b << 1), while our results agree quite well

with those of Gelin, except near the cutoff of the ~gher

mode. Fig. 6 shows the variation of the moduli of the

reflection-and transmission coefficients versus the normal-

ized frequency K. b for one type of bifurcation ( rrll = n 22 =

n and n 21= nlz = 1). As the normalized frequency in-

creases, the transmitted power decreases, and the reflected

one becomes larger, as far as the dominant modes of the

two guides are concerned. This is due to the increased

mismatch of the field distribution of these two modes at

the junction for higher frequency. Fig. 7 illustrates the

variation of the moduli of the reflection and transmission

coefficients versus a/b for another type of bifurcation

(nll = n21 = n22 = n and nlz =1). TBe transmitted power to

the lowest mode on guide 2 decreases rapidly as a/b ~ 1.

This feature corresponds to the conversion of the trans-

mitted power to the radiated one,

The angular dependence of the radiation power is plotted

in Figs. 8, 9, and 10, It can be concluded from these results

that the radiation power of the step discontinuity case is



18 IEEE TRANSACTIONS ON MICROWAVE THEORY AND ‘TECHNIQUES, VOL. MTr-32, NO. 1, JANUARY 1984

?
P(9)X103

:...4,,,...,.’:’. ‘:::

5.0 - &b=2.O

n=3.162

o
1500 12o” 90” 60” 30° O“ ~

Fig. 8. Radiation power density for step discontinuity versus azimuthal
angle. The step height is a parameter.
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Fig. 9. Radiation power density for bifurcation versus azimuthaf angle.
The bifurcation height is a parameter.
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Fig. 10. Radiation power density for bifurcation versus azimuthaf angle.
The bifurcation height is a parameter.

much smaller than that of the bifurcation one. This situa-

tion depends mainly on the fact that the power of each

mode concentrates on both dielectric waveguides. The max-

imum of the field intensity is at the center of the guide for

a step discontinuity case, whereas it deviates from the

center for a bifurcation one.

IX. CONCLUSION

We have analyzed the problem of two symmetrical

three-layer dielectric waveguide junctions by means of the

Wiener-Hopf technique. The key point is the expansion of

the scattered fields at the junction of the two guides in

terms of newly defined orthogonal sets of functions derived

from the residue calculus of the kernel functions. The

formal solutions have been obtained by the rigorous analy-

sis, and the physicall quantities such as reflected, trans-

mitted, and radiated powers are calculated numerically by

use of an iterative method. The first-order solutions used in

this iteration are analytical, and hold for small discontinui-

ties.

The results obtainled here can be extended to the TM

case. For a TM wave, however, the kernel function, the

orthogonal relationship, and the boundary condition corre-

sponding, respectively, to (9), (13), and (28) should include

a square of the refractive index (n ~~) explicitly. Therefore,

the final solution describing the TM wave is somewhat

more cumbersome than the corresponding solution describ-

ing the TE wave. The rigorous formulation for the dielec-

tric waveguides composed of more than three layers de-

serves further attention.

APPENDIX I

Factorized Kernel Functions

Following the conventional procedure [9], we obtain

——

[

. exp –

‘m’’’’’2iil(sr22e3’2e-””n

jkOb

[

( j log Irmnl+ x
—--i f ~+y2

n= Nm+l n Kmnl- X 1
( )+@~_1+log2jtcOb +kob

— log
–r+jko

T ‘J1 T KO

1

/

~ Dl~(w)log (fc:b’ - w’)’’’-{b

‘z () D2m(w)
(ff:b’ - w2)’z2+{bdw )

b.=(n–l/2)~/b, m=l,2 (Al)

where N~ is the number such that {~. is real for n < Nm.
and pure imaginary for n > N~, and y = 0.5772 . . . is

Euler’s constant. Moreover, the functions involved in

integrand are defined by

the

2 s’
+ W~m s~me?~ + ‘?mc2 m lm

2 / W“m+ w ‘C’’mc:m+ w 2W:m S:mslm (A2)
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where

Clm= cos(wjma/b)

c2m= Cos[wjm(b – tz)/b]

fll~ = sin(wlMa/b)

S2~ = sin[w,~(b – a)/b] (A3)

and

2 =K:~+w2
‘lm

W;m= K;m + W2 (A4)

and

K;m=(IC;m-IC; )b2

K;m=(IC;m-IC; )b2. (A5)

APPENDIX II

Evaluation of (40) for Constant Urn({)

Even if we add the mesomorphic function term dl(t) in

(40a), the integral remains the same, namely

When U2(t) = – Ul(sll), we can enclose the contour F_ in

the lower half-plane; the only singularities in this plane are

the poles t= ( and t = S1l. Thus when U2(t ) is constant,

(A6) can be reduced to the residue calculus at the poles of

Gl(t) in the upper half-plane plus the aforementioned two

poles in the lower. The result is expressed as follows:

Similarly, we have,

12({) = – G:({) U1(SII)+ G:(SI1)UI(SII)

-z (J- Su)ul(%,)

(J- J2,)((2, -%l)GH-J2,)
. (A8)
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